
4 

N A T I O N A L  A E R O N A U T I C S  A N D  S P A C E  A D M I N I S T R A T I O N  

Technical Report 32 - 7047 

Analytic h e a r  Systems of Differential 
Equations in Implicit Form 

Richard J. Hanson 

GPO PRICE $ 

CFSTI PRICE(S) $ 
~. . 

Hard copy (HC) f,  d 
Microfiche (MF) ., /s' -, 

ff 653 July 65 

J E T  P R O P U L S I O N  L A B O R A T O R Y  

C A L I F O R N I A  I N S T I T U T E  O F  T E C H N O L O G Y  

P A S A D E N A ,  C A L I F O R N I A  

December 1, 1966 . .  

0 
L "HRuj I 

' 1  



N A T I O N A L  A E R O N A U T I C S  A N D  S P A C E  A D M I N I S T R A T I O N  

Technical Report 32 - 7047 

Analytic Linear Systems of Differential 
Equations in Implicit Form 

Richard J. Hanson 

Approved by: 

u 

R. J.%irka, 4anager 
Scientific Programming Section 

J E T  P R O P U L S I O N  L A B O R A T O R Y  
C A L I F O R N I A  I N S T I T U T E  O F  T E C H N O L O G Y  

P A S A D E N A ,  C A L I F O R N I A  

December 1, 1966 



Technical Report 32-1041 

Copyright @ 1966 
Jet Propulsion Laboratory 

California Institute of Technology 

Prepared Under Contract No. NAS 7-100 
National Aeronautics & Space Administration 



Contents 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  1 

II. Two lemmas on Matrix Theory . . . . . . . . . . . . . . . . .  2 

111. Reduction of the System (1) . . . . . . . . . . . . . . . . . . .  3 

IV. On Solutions of the Integral Equation of Compatibility . . . . . . . .  5 

References . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

;Pi TECHN!CAL REPORT 32-1041 iii I 



c 

1 

Abstract 

A local theory is developed for the system B (2) (dy/dz) = A (2) y + f (2) (1) for 
square holomorphic matrices A and B and a holomorphic vector f with the assump- 
tion that det B ( z )  e 0. Necessary and sufficient conditions for the existence of a 
solution to (1) and an algorithm for calculating this solution (provided it exists) 
are given. 
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Analytic Linear Systems of Differential 

Equations in Implicit Form 

1. Introduction 

In the study of certain systems of ordinary differential 
equations, particularly in turning-point theory and other 
linear systems associated with the singular perturbation 
of small parameters, there appears the following problem. 

Suppose A (z) and B (2) are n X n matrices holomorphic 
in a neighborhood U of z = 0. What form do solutions of 
the system 

possess if 

det B ( z )  = O? 

In Section I1 we prove two lemmas concerned with a 
decomposition of holomorphic matrices. This decomposi- 
tion becomes the keystone of a reduction of the system (I), 
obtained in Section 111, to a linear system of differential 

equations with a singularity of finite rank at z = 0 whose 
solution forms are known, (see Ref. 1, pp. 8-116 for an 
excellent treatment of this problem), and a linear system 
of algebraic equations and (possibly) a linear integral 
equation. A solution to this last-mentioned integral equa- 
tion is a necessary and sufficient condition of compatibility 
which the system (l), (2) must satisfy. In Section IV, a 
procedure is given whereby one may either solve the 
integral equation in Section I11 or determine that no solu- 
tions exist. 

It is of interest to note that systems of the form (l), (2) 
have been studied using the theory of pencils of matrices, 
provided A and B are constant (Ref. 2, Vol. 11, p. 45). 

Lettenmeyer (Ref. 3, pp. 87-91) has obtained results 
regarding the number of holomorphic solutions of a 
homogeneous system of the form (1) with the restriction 
that det B (z) f 0. 

It is convenient to introduce the following notation: 
Throughout this paper 0, and I ,  will designate the p X p 
matrix of zeros and the q X q identity matrix, respectively. 
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Suppose that x is a vector with n components and that 
p integers ni 1 1  are chosen so that n, + . . . + n, = n. - 

Then 

X =  

x1 

. XP. 

will denote a segmentation of the vector x into p vectors 
x, ,  . . . , xp  of respective lengths n,, . . . 9 np. 

Suppose C and D are square matrices of respective 
dimensions n, and m,. Then C @ D will denote the direct 
sum of C and D, the (n, + m,) X (n, + m,) matrix 

II. Two lemmas on Matrix Theory 
lemma 1 

Suppose that B ( z )  + 0 is an n X n matrix holomorphic 
in U .  (a) Then the rank of B( z )  is constant in U - (0 )  if 
U is sufficiently restricted. (b) If the nonnegative integer 
k is the rank of B ( z )  on U - (0) ,  then a fixed minor of 
B ( z )  of order k does not vanish in U - (0) .  

Proof. We first prove part (a). The set of points in U 
where the rank of B ( z )  changes is a subset of the set of 
points in U where some minor, not identically zero, of B (z) 
has a zero. Hence it is a finite set and every point of U has 
a punctured neighborhood about it in which the rank 
of B (z) does not change. 

We now prove part (b). If (b) were false then there 
would be points z E U - (0) such that rank B ( z )  # k no 
matter how small the neighborhood U of z = 0, which 
would contradict (a). This completes the proof of 
Lemma 1. With the aid of this lemma, we can now prove 
the following. 

lemma 2 

Suppose B ( z )  is an n X n matrix holomorphic in U .  
Suppose U is suficiently restricted so that B ( z )  has con- 
stant rank k in U - (0) .  Then there exist n X n matrices 

4 
P ( z )  and Q (z),  both of which are holomorphic in U and 
rwnsinguhr for z f O  such that 

The holomorphic matrix of dimension C(z) is k X k with 
detC(z)+O. If B ( z )  is of constant rank k on all of U ,  
then the matrices P and Q of Eq. (3) are nonsingulur at 
z = 0 also. 

Proof. It follows from Lemma l(b) that we may find 
a constant permutation matrix S such that 

where C,, (z) is a k X k matrix with det C,, (z) # O  for 
z e U  - (0). 

Suppressing the dependence upon z, the identity 

valid on U - (0), implies that 

For if the left member of expression (6) were nonzero 
at some point of U - (0) it would follow that the rank 
of the right member of identity (5) would exceed k at some 
point of U - (0). But the rank of the left member of (5) is 
exactly k on U - (0). (Ref. 2, Vol. I, p. 66.) Thus expres- 
sion (6) follows. 

Let nonnegative integers po and v,, be chosen large 
enough so that both of the matrices 
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and 

are holomorphic in U. Observe that P ,  and Q1 are both 
nonsingular for z # 0. 

Noting that 

we define 

The first part of Lemma 2 follows from Eq. (9) and (12). 

The last statement of Lemma 2 follows from the obser- 
vation that if B (2) is of constant rank k on U ,  the pennuta- 
tion matrix S in Eq. (4) may be so chosen that det C,, (z)  # 
0, (z E U). Thus the integers po and yo in the matrices in the 
right-hand members of (7) and (8) may both be taken to 
be zero. 

The matrices P, Q, and C defined by Eq. (10)-(12) are 
holomorphic in U .  This completes the proof of Lemma 2. 

Lemma 2 bears a resemblance to a classical theorem 
found in Ref. 3, p. 75. In this theorem it is proved that 
if det B (z)  f 0 then there exist matrices P and Q such that 

where P is a polynomial matrix with det P (z) = 1, Q (z )  is 
holomorphic and nonsingular in U,  and D is a diagonal 
matrix of nonnegative integers. 

From Lemma 2 and expression (3) it is clear that a 
decomposition of the form (13) may now be obtained 
for C (2). 

We will discuss this 110 further since the theorem prov- 
ing the decomposition (13) is not used directly in the 
remainder of this paper. 

111. Reduction of the System (1 1 

We then introduce the following definition. 
Let the matrix B ( z )  satisfy the hypotheses of Lemma 2. 

Definition 

The integer n - k, which appears in Eq. (3) of Lem- 
ma 2, is the analytic nullity of B (z), ( z  E V). 

Let the integer m, designate the analytic nullity of the 
matrix B (z) of the system (1). By identity (2) mo > 0. Note 
that if B ( z )  is of rank k on U - {0}, then mo = n - k. 

Using Lemma 2, there exist n X n matrices Po (z )  and 
Qo (z) holomorphic in U and nonsingular for z # 0 such 
that 

where T 0 is an integer. 

The change of the dependent variable 

introduced into the system (1) results in the system 

Multiplying the system (16) by the holomorphic matrix 
Po ( z )  and using Eq. (14) we obtain 

The denfinitions of the n X n matrix D (z)  and the 
n-dimensional vector g (z) are obvious. 

We now partition the n X n matrix D ( z )  by setting 

where D,,  (z) is an T,  X rn, matrix holomorphic in U. 
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Again applying Lemma 2, there exist m, X m, matrices 
Pi (2) and Q1 ( z )  holomorphic in (a possibly reduced neigh- 
borhood of z = 0) U and nonsingular for z # 0 such that 

Pi ( z )  Dll  ( z )  Q1 ( z )  = Om, @ z'Zmo-ml 

where mi 1 0  and 1 O are integers. 

We introduce the change of variable 

w = [Qi(z) @ Zn-ntol~ 

in the system (17) and obtain 

With 

X =  

let 

[Z] 
be a segmentation of the vector function h ( z )  of Eq. (22). 
Each of the vectors hi has the same length as the corre- 
sponding xi for i = 1,2,3. 

Define 

+ 
Multiplication of the system (21) by the matrix Pl(z) 

@In-%, and using Eq. (22) and (23) result in the system 

From Eq. (19) and (23), the n X n matrix M ( z )  may be 
written as the following partitioned matrix: 

M ( z )  = m, 

From the form of M ( z )  displayed in Eq. (25), the system 
(24) is equivalent to the following equations for the seg- 
ments xi, (i = 1,2,3), of the vector x: 

We put t = T + u and insert Eq. (27) into (28) to obtain 

Note that R ( z )  is an (n - m,) X (n - m,) matrix holomor- 
phic in U .  

Let a fundamental matrix @ ( z )  for the homogeneous 
equation 
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.--, 
be obtained on a Riemann surface 2 with branch point at 
zero (Ref. 1, pp. 7-8). 

We now make a critical hypothesis. 

The equation (26) has at least one solution on 2. (32) 

Let z0 be a point of where Eq. (26) has a solution 
x3 (2"). Then there exists a unique (n - m,)-dimensional 
vector $, = @-l ( z o )  xC1 (z,) such that @ (z,) +,, = x:( (z,))  
solves Eq. (26) for z = zll. 

By the use of the formula for the variation of parameters 
(Ref. 1, pp. 8-9), together with Eq. (29), Eq. (28) has a 
solution 

(33) 

Notice that xs ( z )  solves Eq. (26) at z = z,~.  

To simplify the notation let us define 

Then from Eq. (33) and (34), Eq. (26) will have a solu- 
tion on 2 if and only if 

A solution to the integral equation (35) for X, (z), ( Z  E S), 
together with the hypothesis (32) are necessary and SUB- 
cient conditions for the Eq. (26)-(28) to possess solutions 
on Z. 

j P L  TECHN!CR? REPORT 32- I04 I 

We refer now to the matrix in the right member of 
Eq. (18). From Eq. (19) it is clear that if the analytic 
nullity of D,, ( z )  is zero (m, = 0), Eq. (26) and hence the 
integral equation (35) are absent. The function f of the 
system (1) can be any arbitrary vector holomorphic on $. 

In other words, Eq. (27) and (28) reduce to a trivial 
linear system of algebraic equations and a linear analytic 
nonhomogeneous system with a singularity of finite rank 
at z = 0. 

IV. On Solutions of the Integral Equation 
of Compatibility 

Suppose that 2 is the Riemann surface of Section I1 
on which a fundamental matrix for Eq. (31) has been 
obtained. Consider the integral equation 

Here x1 and k, are m-dimensional, while M, and N ,  are 
m X m matrices holomorphic and of respective constant 
ranks m, 1 0  and n, 1 0  on 2. The integer m, is used 
again here for notational convenience and is, in general, 
different from the integer m, of Section 111. 

Notice that the integral equation (35) is of the form (36) 
and satisfies each of the above requirements except that 
M ,  and N,, as reconstrued from Eq. (35), may be rec- 
tangular matrices. This inconvenience can be avoided by 
adding blocks of zeros to M ,  and N ,  and (possibly) intro- 
ducing a dummy segment onto x1 while adding a segment 
of zeros onto k,. The new integral equation so obtained 
will have the form (36), with M ,  and N ,  both square 
matrices, and will be equivalent to Eq. (35). 

To illustrate this, suppose 

M l = [  * ] } m - p  

and 

N , = [ * ] } m  

5 



designate respective dimensions of the matrices M, and 
N ,  appearing in Eq. (36), where the integer p > 0. 

We now proceed to solve the integral equation (36). 

From Lemma 2 there exist four m X m matrices R1, S,, 
T,,  and Vi, all of which are holomorphic and nonsingular 
on 8,  such that 

Define matrices 

2,(+ ---- [ M p , 1 , 1  I 
(37) 

From Eq. (39), the integral equation (36) is equivalent to 

and vectors 

x,(z) = ---- [: ::;I I 
- 

Thus a necessary condition that Eq. (36) have a solution 
is that 

Then from Eq. (37) and (38) the equation 

where k,, (2) is holomorphic on S .  

Suppose, then, that Eq. (42) is satisfied. 

= x, (2) Let 

N N 

is equivalent to Eq. (36), but now the matrices M, and N, 
are both of dimension m X m. 

(43) 

where k,, is an as yet unspecified (m - m,)-dimensional 
vector holomorphic on 8. Then Eq. (41) has a solution, 
provided 

A completely analogous reconstruction of Eq. (36) can 
be made if the dimensions of Mi and N, are 

has a solution. 
and 

From Eq. (40), Eq. (44) is equivalent to m 
A 

where again the integer p > 0. 
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So-jet 

Then a further necessary condition that Eq. (45) have a 
solution for V;~(Z)  x, ( z )  is that 

Suppose that Eq. (47) is satisfied. Then Eq. (45) has a 
solution 

where k, ,  ( z )  is any arbitrary ( m  - n,)-dimensional vector 
function holomorphic on C. 

Recall, however, that if Eq. (42) is satified, the segment 
k,, of k ,  defined in Eq. (43) is still a free holomorphic 
vector function. 

Thus the condition (47), or 

may involve a linear system for k, ,  on Z possibly of the 
same type as considered in the system (l), (2) .  But this 
new system will be of an order lower by at least one than 
that of the system ( l ) ,  (2). 

It is clear that a decision will ultimately be reached 
regarding the solvability of the original system (l), (2). If 
no solution exists, the procedures and methods given in 
Sections I11 and IV will so indicate. If a solution does 
exist, it may be obtained with the classical theory of sys- 
tems of linear analytic differential equations with singu- 
larities of finite rank and the application of a finite number 
of rational operations to elements of fundamental matrices 
of these systems and the elements of other given holo- 
morphic matrices. 
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